Garlock

Garlock Butterfly Valves

Trusted throughout chemical, petrochemical and many other industries.

Leaders in Sealing Integrity

Table of contents

Garlock Butterfly Valves

4 Overview 5 The correct type of lining 6 Reliable and safe to operate 7 Materials 8 Production 9 Testing technology 10 Standards The correct material choice for your application 11

GAR-SEAL, SAFETY-SEAL, MOBILE-SEAL

Applications

- 12 GAR-SEAL
- 13 SAFETY-SEAL
- 14 MOBILE-SEAL
- 15 Materials

Dimensions

- 16 Wafer
- 17 Lug
- 18 Wafer tank truck

Head flange

- 19 Dimensions standard version
- 20 Dimensions for direct mounting of drives

Manual operators

- 21 Hand-Lever
- 21 ADR-Hand-Lever
- 22 Gear Operator

Technical Details

- 23 Standard Design
- 25 Valves for vacuum applications
- 26 Data for vacuum application

Garlock Butterfly Valves

Reliable handle of corrosive and abrasive media

The economic advantages of reduced maintenance, smooth operation and exceptional service life are proven repeatedly. Garlock valves set the standards in TA-Luft compliance. The reliability of Garlock butterfly valves is not only appreciated and well known at our customers but also certified with SIL 3 according to EN 61508.

GAR-SEAL

GAR-SEAL valves are used extensively where corrosive, abrasive and toxic media needs to be reliably controlled. They are typically used for accurate control, throttling and shut-off duties in the chemical, petrochemical, chlorine, paper, electro-plating, and many other industries. GAR-SEAL butterfly valves offer reduced maintenance requirements and increased operational reliability.

MOBILE-SEAL

MOBILE-SEAL valves are used on road tanker vehicles, railway wagons, silos and other transportation and storage containers where high chemical resistance, reliability and special safety requirements are essential. MOBILE-SEAL is EN 14432 approved.

SAFETY-SEAL

SAFETY-SEAL valves are used in applications where corrosive, abrasive and toxic media needs to be handled and electrostatic charges must be avoided at the same time.

The correct type of lining

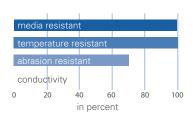
Temperature range

-40 °C up to +200 °C -40 °F up to +392 °F

Temperature range

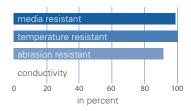
-40 °C up to +200 °C -40 °F up to +392 °F

Temperature range -40 °C up to +200 °C -40 °F up to +392 °F

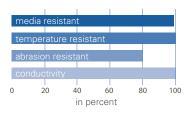


Temperature range -40 °C up to +85 °C -40 °F up to +185 °F

PTFE


Void-free body liner and disc isostatic molded from virgin PTFE. High material density >2.16 g/cm³. Guaranteed lining thickness of at least 3 mm plus high crystallinity. FDA and 1935/2004/EG compliant.

Abrasive PTFE


For applications requiring high chemical and abrasive resistance, the use of abrasive PTFE is recommended.

The special PTFE compound is considerably more resistant to mechanical wear while offering almost the same chemical and thermal resistance.

Antistatic PTFE

For explosive environments and medias this electrostatically conductive lining is available. The service life is comparable to the values for valves lined with PTFE. The material is FDA conform. TÜV approval (TÜV 941 F 416 601). Surface resistance $\leq 106 \Omega$. Volume resistance $\leq 106 \Omega$ cm.

UHMWPE

For use in extremely abrasive media, Garlock offers a complete ultra-high molecular weight polyethylene (UHMWPE) lining. This material is extremely resistant to abrasion from suspensions and other media due to its extremely high molecular weight, while also offering excellent chemical resistance and FDA and 1935/2004/EC compliance.
 media resistant

 temperature resistant

 abrasion resistant

 conductivity

 0
 20

 40
 60

 80
 100

 in percent

Reliable and safe to operate

Section through the head flange

The shaft is sealed against atmospheric pollution and corrosion by two O-rings. TA-Luft compliant sealing is standard. If control connection is needed, it can be integrated to observe the shaft tightness.

Body

According to Pressure Equipment Directive the bodies of Garlock valves are approved by TÜV Rheinland according to DIN 3840 and EN 12516.

Flange types

The valves are available in Wafer, Lug and wafer tank truck type.

Design The two

The two-piece design of shaft and disc allows an easy change of disc and liner. To your convenience disc and liner can be delivered as a pre-assembled set.

Shaft sealing

The fully reliable shaft sealing system with the Garlock seal rings guarantees tightness over a long period. The shaft sealing system consists of two barriers. The first is an area where disc and liner are pressed together. The second barrier is the Garlock seal ring which includes a PTFE-ring energized by two O-rings. The long extensively approved system is completely maintenance free. The structure allows easy maintenance and replacement of disc and liner on site without special tools. The shaft sealing is certified according to TA-Luft and ISO 15848-1 and exceeds the requirements.

Quality assurance

Garlock valves set the standard in high quality. To ensure this and guarantee a long reliable lifetime the Garlock quality management system is certified according to ISO 9001 and DGRL 2014/68/EU Module H1. Each valve is extensively tested according to EN 12266 or EN 14432 before leaving our factory. To ensure absolute traceability of the materials each valve is tagged with a serial number on a stainless-steel tag. Based on the serial number, material certificates for body parts, PTFE/UHMWPE resins, shaft and steel disc can be provided. This high standard guarantees absolute quality, control, and transparency.

Certificates and approvals

- » DIN EN ISO 9001:2008
- » 2014/68/EU
- » 2006/42/EG
- » Material certificate EN 10204 3.1
- » Testing according to EN 12266
- » Testing according to EN 14432
- » 100% spark test of all PTFE and UHMWPE parts

Materials

As standard, the bodies of Garlock fittings are made of high-quality ductile cast iron (EN-JS 1049) as standard. Depending on the application, stainless steel (1.4581) is also available. All housings are manufactured and tested in accordance with the Pressure Equipment Directive.

Liner

Depending on the intended use, a large selection of lining materials is available. To provide reliable seals, PTFE is available in several versions as well as UHMWPE. All lining materials are manufactured by specialists and inspected comprehensively. Your contact for Garlock products will be happy to assist you in selecting the suitable material.

Elastomers

The Elastomers generate the necessary force to achieve a tight seal between the lining and the valve disc. Even if these elements do not come into direct contact with the medium, care should be taken to ensure good resistance. Garlock offers various materials for this and can be used individually.

- » Silicon (standard)
- » FKM
- » EPDM
- » CR

Disc

The Disc is also available in different materials depending on the application. Plastics such as PTFE and UHMWPE are available. All Discs are manufactured by specialists and inspected comprehensively.

Marking

Each valve is provided with a stainless steel plate. All information such as dimensions, serial number, design, material, operating pressure, temperature, flange connection and certification are engraved on the plate in accordance with the DIN EN 19 standard.

Production

All processes have been defined through our ISO 9001 quality assurance system. The system is regularly reviewed and constantly developed. Quality, service and flexibility of the highest order are standard requirements we impose on ourselves and all our suppliers.

Due to our production facility in Germany and stock all over the world, we are in a position to react to your requirements in a very short time, worldwide.

In our assembly department we manufacture each valve and automation according to the customer requirements. Customer's specific configurations of liner, elastomer and actuators can be carry out by us.

Custom-tailored service

We are happy to help you to find the most suitable product for your particular application. In this respect, we have a high number of standard products available to you. In addition, project planning and design of custom-made solutions for our customers is one of our strengths, where we draw on decades of experience as a global manufacturer of seals and valves.

We offer professional consulting and project planning that is geared towards your requirements. Your benefit from our individual on-site support services which are specifically tailored to meet your company's needs. We conduct training seminars, help optimize inventory, reduce emissions, ensure functionality and prevent costly downtime. Our experienced employees will be happy to assist you at any time.

Test engineering

Testing

All of our individual valves are tested according to EN 12266-1 or EN 14432 before they are shipped to you. Standard tests include body strength (P10), body tightness (P11) and seat tightness (P12). A functional test is also carried out.

Testing of liner thickness

On all PTFE and UHMWPE parts, the liner thickness is also checked in accordance with specific measuring methods. The test ensures that the required thicknesses are adhered reliably for all parts. This measure is indicative of the special attention paid to quality requirements of Garlock valves. This guarantees a long and reliable lifetime of PTFE and UHMWPE parts during operation.

Conductivity

The PTFE body liner and disc of the SAFETY-SEAL (conductive version) are all checked for the required conductivity. These measurements are carried out with the resistivity measurement device in accordance with the specific guidelines. This ensures that electrostatic loads are safely discharged during operations.

Standards

Garlock Butterfly Valves

Face-to-face dimensions

- » DIN EN 558-1 GR 20, (DN 350 GR25)
- » ISO 5752 Table 5 short
- » ASME B16.10
- (2" bis 12" Table Narrow 14" bis 24" Table Wide)
- » MSS-SP 67
- (2" bis 12" Table Narrow
- 14" bis 24" Table Wide)

» API 609

(2" bis 12" Category A Table 2 14" bis 24" Category B Table 3)

Head flange

- » EN ISO 5211
- » NF E 29-402

Body types

- » Wafer
- » Lug
- » Tank truck
- » With long neck for insulation in accordance with HeizAnl.V (German Heating Installations Ordinance)

Body strength

» DIN EN 12516 T2 (DIN 3840), tested within the scope certification according to 2014/68/EU Module H1.

Body Materials

- » Cast steel (GS-C 25, 1.0619)
- » Stainless steel casting
- (G-X5CrNiMoNb 18 10, 1.4581)

Flange connection

- » EN 1092 PN 10/16 (Design A/B)
- » ASME B16.5 Class 150 lbsn (Design RF, FF)
- » DIN 28459

Testing

- » EN 12266 P10
- » EN 12266 P11
- » EN 12266 P12 leak rate A
- » EN 14432 8.2-8.4

Certificates and approvals

- » DIN EN ISO 9001:2008
- » 2014/68/EU
- » Material certificates according to EN 10204 - 3.1
- » Testing according to EN 12266
- $\scriptstyle >$ Testing in accordance with EN 14432
- » 100% spark testing of all PTFE and UHMWPE parts

PTFE lining

- » Void-free
- » Isostatic pressed
- » High density (min. 2.16 g/cm³)
- » Lining thickness min. 3 mm
- » Vacuum lining up to 10 mm available

Vacuum tightness

» q Hemax< 10⁻⁶ mbar $1 \cdot s^{-1}$

Identification

» DIN EN 19 » AD 2000 Data Sheet A4

Valve disc alignment

» Centrally, i.e. energy-saving

Characteristic

» Linear

Approvals

- » 2014/68/EU
- » TA-Luft / VDI 2440
- » EN 61508 SIL
- » EN 14432 (MOBILE-SEAL)
- » FDA
- » EG 1935/2004
- » ISO 15848-1 AH

The correct material choice for your application

	F	itting	s Materi	al				Des	ign Type	9	
н	1 ousing	Hous	2 sing lining	F	3 Iap disk		4 cial design sing lining	Fitt	5 ing Typ	Va	6 Ilve design
Code	Material	Code	Material	Code	Material	Code	Material	Code	Material	Code	Material
1	EN-JS 1049 (0.7043)	1	PTFE**	1	PTFE**	A	antistaic (SAFETY-SEAL)	V	Vacuum	W	WAFER Ring housing
3	Stainless steel (1.4581)	2	UHMWPE***	2	UHMWPE***	С	abrasive	SV	Special vacuum	L	LUG Flange housing
										N	10BILE-SEAL
										Code	For existing pipe flanges
										W-T	MOBILE-SEAL Wafer
										L-T	MOBILE-SEAL Lug
										W-TW	MOBILE-SEAL Ring housing according to DIN 28459 drilled

Examples	1	2	3	4	5	6		
GAR-SEAL Wafer version	1	1	1	-	-	W	MT	
SAFETY-SEAL Lug version, antistatic	3	1	1	А	-	L	MT	
MOBILE-SEAL Wafer design according to TW standard	1	1	1	-	-	W-TW	MT	
SAFETY-SEAL Wafer version, antistatic	1	1	1	А	-	W	MT	
GAR-SEAL Wafer version, vacuum-lined	1	1	1	-	V	W	MT	

Performance data: DN 50 - 600, 2" - 24"

Nominal pressure: Maximum 16 bar (<DN 300) Vacuum up to 1 mbar absolute, temperature-dependent

Operating temperature:

-40 °C up to +200 °C (for PTFE**) -40 °C up to +85 °C (for UHMWPE***) MT = GAR-SEAL fittings

- ** Polytetrafluoroethylene
- *** ultra-high moleculare weight polyethylene

GAR-SEAL

Applications

GAR-SEAL butterfly valves are used where corrosive, abrasive and toxic media need to be controlled. GAR-SEAL valves are used for controlling, throttling and shutting off purposes in the chemical, petrochemical and chlorine industry as well as in electroplating, the paper industry and many other industries.

GAR-SEAL

Dimensions

» DN 50 / 2" up to DN 600 / 24"

Flange connection

- » EN 1092 PN 10/16 (Design A/B)
- » ASME B16.5 class 150 lbs (Design RF/FF)

Face-to-face dimensions

- » DIN EN 558-1 GR 20 (DN 350 GR25)
- » ISO 5752 Table 5 short » ASME B16.10
- (2" up to 12" Table Narrow 14" up to 24" Table Wide)
- » MSS-SP 67 (2" up to 12" Table Narrow
- 14" up to 24" Table Wide) » API 609
- (2" up to 12" Category A Table 2 14"up to 24" Category B Table 3)

Body strength

- » DIN/ EN 12516 T2 (DIN 3840)» tested within the scope of the inspection
- body designate by Module H1

Operating pressure

- » DN 50/2" up to 300/12": 16 bar
- » above DN 300/12": 10 bar

(depending on operating temperature)

Testing

- » EN 12266 P10
- » EN 12266 P11
- » EN 12266 P12 Leak rate A

Bodies

» Wafer and Lug design with long neck for insulation

Vacuum

» up to 1 mbar absolute (depending on size and temperature)

Temperature range

» -40 °C up to +200 °C (depending on material)

Head flange

- » EN ISO 5211
- » NF E 29-402

Liner

- » PTFE
- » Abrasive PTFE
- » UHMWPE

SAFETY-SEAL

Applications

SAFETY-SEAL butterfly valves are used in applications where corrosive, abrasive and toxic media need to be insulated against electrostatic charges. SAFETY-SEAL valves offer long life and reduced maintenance effort and extra safety.

SAFETY-SEAL

Dimensions

» DN 50 / 2"up to DN 600 / 24"

Flange connection

- » EN 1092 PN 10/16 (Design A/B)
- » ASME B16.5 class 150 lbs (Design RF/FF)

Face-to-face dimensions

- » DIN EN 558-1 GR 20 (DN 350 GR25)
- » ISO 5752 Table 5 short
- » ASME B16.10(2" up to 12" Table Narrow14" up to 24" Table Wide)
- » MSS-SP 67(2" up to " Table Narrow14" up to 24" Table Wide)
- » API 609 (2" up to 12" Category A Table 2 14" up to " Category B Table 3)

Body strength

- » DIN/ EN 12516 T2 (DIN 3840)
- » tested within the scope of the inspection body designate by Module H1

Operating pressure

- » DN 50/2" up to 300/12": 16 bar
- » above DN 300/12": 10 bar

(depending on operating temperature)

Testing

- » EN 12266 P10
- » EN 12266 P11
- » EN 12266 P12 Leak rate A
- » EN 12266 F22

Bodies

» Wafer and Lug design with long neck for insulation

Vacuum

» up to 1 mbar absolute (depending on size and temperature)

Temperature range

» -40 °C up to +200 °C (depending on material)

Head flange

- » EN ISO 5211 » NF E 29-402
- » NF E 29-40

Liner

» Antistatic PTFE

MOBILE-SEAL

Applications

MOBILE-SEAL butterfly valves are used on road tanker vehicles, railway wagons, silos and other transportation and storage containers where high chemical resistance, reliability and special safety requirements are essential.

Garlock is a certified testing service in accordance with EN 14432 and the ADR regulations, which means that our fittings are tested and labeled directly in-house.

Garlock test mark

MOBILE-SEAL

Dimensions

- » DN 50/2" up to DN 100/4" DIN 28459
- » DN 50/2" up to DN 150/6" EN 1092

Flange connection

- » EN 1092 PN 10/16 (Design A/B)
- » ASME B16.5 class 150 lbs
- (design RF/FF)
- » DIN 28459 PN10

Face-to-face dimensions

- » DIN EN 558-1 GR 20
- » ISO 5752 Table 5 short
- » ASME B16.10
- (2" up to 4" Table Narrow) » MSS-SP 67
- (2" up to 4" Table Narrow) » API 609
- (2" up to 4" Category A Table 2)

Body strength

- » DIN/ EN 12516 T2 (DIN 3840)
- » tested within the scope of the inspection body designate by Module H1

Operating pressure

» DN 50/2" - 100/4": 10 bar (depending on operating temperature)

Testing

- » EN 14432 8.2
- » EN 14432 8.3
- » EN 14432 8.4

Bodies

» Wafer and Lug design with long neck for insulation

Vacuum

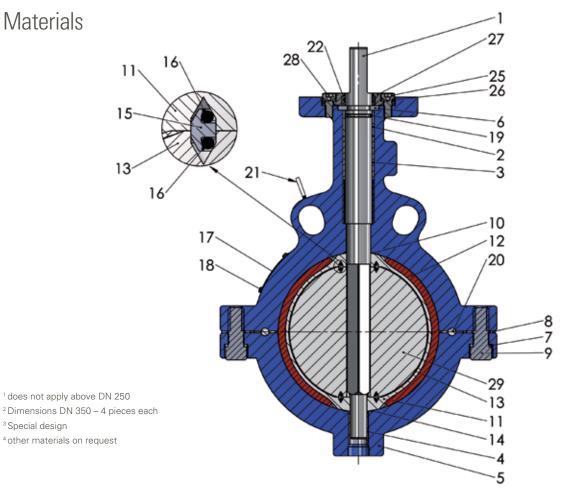
» up to 1 mbar absolute

Temperature range

» -40 °C up to +200 °C (depending on material)

Head flange

- » EN ISO 5211
- » NF E 29-402


Liner

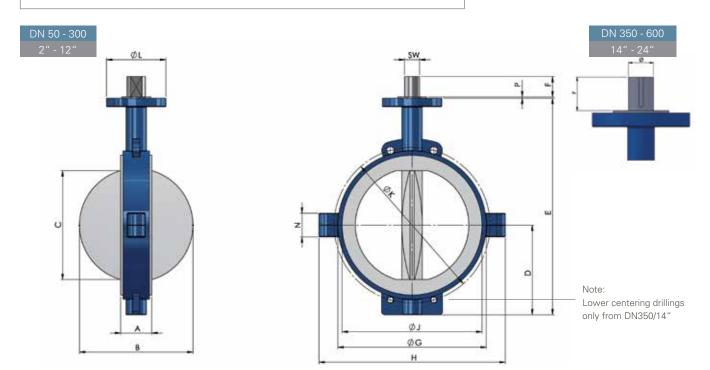
- » PTFE
- » Antistatic PTFE
- » Abrasive PTFE
- » UHMWPE

Zertifikate

- » EN 14432
- » TÜ-AGG 044-84

GAR-SEAL, SAFETY-SEAL, MOBILE-SEAL

Pos.	Qty.	Material	Designation	Po	s.	Qty.	Material	Designation
1	1	1.4313 up to	Shaft	1	4*	1	GYLON®	Bottom gasket
		DN 300 1.4021 fromDN 350		1	5*	2	PTFE	Sealring
2	1	Steel/PTFE	Slide bushing (top)	1	6*	44	Viton	O-Ring (Sealring)
3	2	Steel/PTFE	Slide bushing (center)	1	7	1	Stainless steel	Nameplate
4	1	Steel/PTFE	Slide bushing (bottom)	1	8	4	Stainless steel	Rivet
5	1	see material table	Body	1	9	14	Viton	O-Ring
6	1 ¹	PTFE, carbon reinf.	Retaining ring (split)	2	0*	2	PTFE	Securitiy element
7	2 ²	Stainless steel	Spring washer	2	1	1 ³	Steel, electroplated	Ground connection
8*	2 ²	GYLON®	Washer	2	2	24	Viton	O-Ring (Head flange)
9	2 ²	Stainless steel	Body screw	2	5	4	Stainless steel	Screw
10*	1	GYLON®	Top gasket	2	6	4	Stainless steel	Spring washer
11*	1	see material table	Lining	2	7	1	Stainless steel	Head flange
12*	24	Silicone	Elastomer backup-element	2	8	1	GYLON®	Seal (Head flange)
13*	1	see material table	Disc	2	9	1	1.4404 0.7040 (GGG 40)	Disc insert (only PTFE and UHMWPE lined disc)


Garlock

* Spare-parts kit

GAR-SEAL, SAFETY-SEAL, MOBILE-SEAL

Dimensions, wafer intermediate flange design

Flange connection: Overall length: Head flange: EN 1092 (DIN 2501), PN 10 • PN 16 • ANSI B 16.5,150 LBS EN 558-1 GR20 (DIN 3202 T3 K1) and ASME B16.10 EN ISO 5211

	C	ON	Head flange	Α	В	С	D	Е	F	ØG	Н	ØJ	\$	ðК	ØL	SW	Ρ	N		z	Weight kg **
	Inch	n mm	**										EN PN10	ASME 150lbs		Ø			EN PN 10	ASME 150 lbs	
	2	50	F05	43	60	43	62	202	35	102	152	98	125	121	65	10,0	3	40	4xM16	4x5/8"-11	2,6
AL	2 ½	65	F05	46	70	53	70	220	35	121	171	120	145	140	65	10,0	3	40	4xM16	4x5/8"-11	3,5
E-SE	3	80	F05	46	82	67	79	244	35	133	183	127	160	152	65	10,0	3	40	8xM16	4x5/8"-11	3,8
MOBILE-SI	4	100	F07	52	106	93	95	275	35	162	214	159	180	190	90	13,0	3	50	8xM16	8x5/8"-11	6,2
ž	5	125	F07	56	128	115	108	303	35	192	248	187	210	216	90	13,0	3	50	8xM16	8x3/4"-10	8,6
	6	150	F10	56	157	147	121	336	40	218	290	216	240	241	125	17,0	3	56	8xM20	8x3/4"-10	11,6
	8	200	F10	60	197	188	150	395	40	273	350	270	295	298	125	17,0	3	56	8xM20	8x3/4"-10	17,4
SAFETY-SEAI	10	250	F12	68	246	236	179	459	50	328	405	324	350	362	150	22,0	3	60	12xM20	12x7/8 [°] - 9	30,6
- H	12	300	F12	78	295	284	216	536	50	378	455	375	400	432	150	22,0	3	70	12xM20	12x7/8 [°] - 9	38,3
SAF	14	350	F14	92*	335	322	265	640	60	438	550	413	460	476	175	44,4	4	70	16xM20	12x 1"- 8	71,5
AL +	16	400	F14	102	387	374	305	725	60	489	570	470	515	540	175	44,4	4	70	16xM24	16x 1"- 8	90,6
gar-seal	18	450	F16	114	430	415	320	780	80	539	670	533	565	578	210	44,4	4	70	20xM24	16x1 1/8"- 7	113,0
GAI	20	500	F16	127	484	467	355	865	80	594	690	584	620	635	210	44,4	4	70	20xM24	20x1 1/8"- 7	163,5
	24	600	F25	154	578	558	415	990	90	695	820	692	725	749	300	63,5	5	76	20xM27	20x1 1/4"- 7	254,0

8	200	
10	250	for PN 16 > DN 150
12	300	

*GR 25 ** EN ISO 5211; all dimensions in millimeters (mm), if not indicated differently

** Weight for version 111-W

12xM20

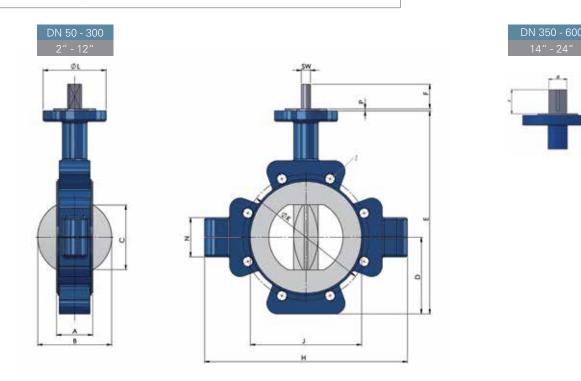
12xM24

12xM24

Garlock

EN PN16 295

355


410

GAR-SEAL, SAFETY-SEAL, MOBILE-SEAL

Dimensions, flange version lug

Flange connection: Overall length: Head flange:

EN 1092 (DIN 2501), PN 10 • PN 16 • ANSI B 16.5,150 LBS EN 558-1 GR20 (DIN 3202 T3 K1) and ASME B16.10 EN ISO 5211

	D	N	Head flange	Α	В	С	D	E	F	н	ØJ	¢	ðк	ØL	SW	Ρ	N		z	Weight kg **
	Inch	mm	**									EN PN10	ASME 150lbs		Ø			EN PN 10	ASME 150 lbs	
	2	50	F05	43	60	43	62	202	35	170	98	125	121	65	10,0	3	45	4xM16	4x5/8"-11	3,6
	2 1/2	65	F05	46	70	53	70	220	35	193	120	145	140	65	10,0	3	45	4xM16	4x5/8"-11	4,5
EAL	3	80	F05	46	82	67	91	256	35	252	127	160	152	65	10,0	3	56	8xM16	4x5/8"-11	7,1
MOBILE-SEAL	4	100	F07	52	106	93	109	289	35	290	159	180	190	90	13,0	3	56	8xM16	8x5/8"-11	10,2
MOB	5	125	F07	56	128	115	120	315	35	312	187	210	216	90	13,0	3	60	8xM16	8x3/4"-10	12,7
	6	150	F10	56	157	147	136	351	40	312	216	240	241	125	17,0	3	66	8xM20	8x3/4"-10	17,3
	8	200	F10	60	197	188	163	408	40	416	270	295	298	125	17,0	3	76	8xM20	8x3/4"-10	27,0
EAL	10	250	F12	68	246	236	200	480	50	508	324	350	362	150	22,0	3	90	12xM20	12x7/8 [°] - 9	41,5
GAR-SEAL + SAFETY-SEAL	12	300	F12	78	295	284	233	553	50	575	375	400	432	150	22,0	3	110	12xM20	12x7/8 [°] - 9	60,5
SAFE	14	350	F14	92*	335	322	265	640	60	640	413	460	476	175	44,4	4	70	16xM20	12x 1"- 8	108,0
+	16	400	F14	102	387	374	305	725	60	720	470	515	540	175	44,4	4	70	16xM24	16x 1"- 8	137,5
-SE/	18	450	F16	114	430	415	320	780	80	750	533	565	578	210	44,4	4	70	20xM24	16x1 1/8"- 7	153,9
GAF	20	500	F16	127	484	467	366	876	80	830	584	620	635	210	44,4	4	70	20xM24	20x1 1/8"- 7	256,0
	24	600	F25	154	578	558	415	990	90	960	692	725	749	300	63,5	5	76	20xM27	20x1 1/4"- 7	395,0
		1										EN PN16								

200 250 for PN 16 > DN 150 300

295

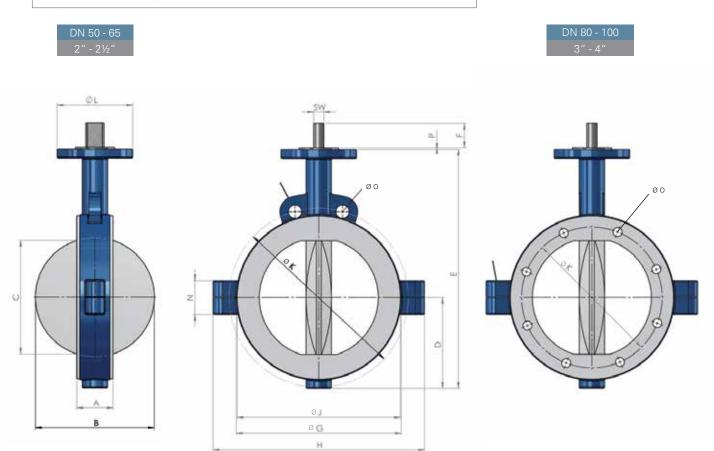
N 150 355 12xM24 410 12xM24

*GR 25 ** EN ISO 5211; all dimensions in millimeters (mm), if not indicated differently

** Weight for version 111-L

12xM20

8

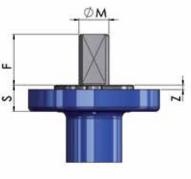

10

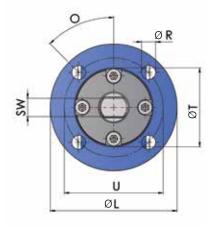
12

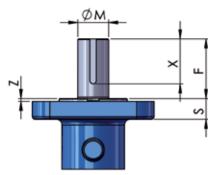
MOBILE-SEAL

Dimensions, wafer tank truck

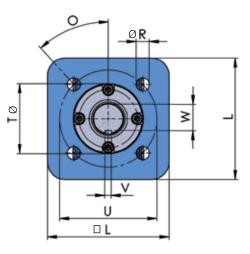
Flange connection: Overall length: Head flange: DIN 28459 PN 10 EN 558-1 GR20 (DIN 3202 T3 K1) EN ISO 5211

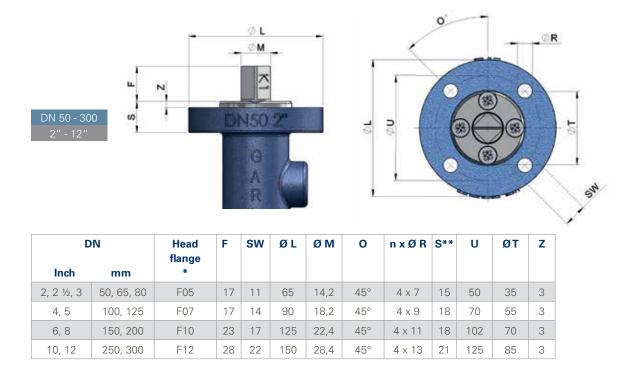

	D	N	Head flange	Α	В	С	D	E	F	ØG	н	ØJ	ØК	ØL	SW	Р	N	ØO	Z	Weight kg **
	Inch	mm																		
EAL	2	50	F05	43	60	43	62	202	35	102	152	98	130	65	10	3	40	11	8xM10	2,6
ILE-S	21⁄2	65	F05	46	70	53	70	220	35	121	171	120	130	65	10	3	40	11	8xM10	3,5
MOBILE-	3	80	F05	46	82	67	82	244	35	154	183	127	130	65	10	3	40	11	8xM10	3,7
	** EN ISO 5211; all dimensions in millimeters (mm), if not indicated differently																			


Head flange


Dimensions standard version

According to EN ISO 5211




D	N	Head flange	F	SW	ØL	ØM	0	n x Ø R	S	U	ØT	Z	V	w	X
Inch	mm														
2, 2 1⁄2, 3	50, 65, 80	F05	35	10	65	14,2	45°	4 x 7	15	50	35	3	-	-	-
4, 5	100, 125	F07	35	13	90	20,5	45°	4 x 9	18	70	55	3	-	-	-
6, 8	150, 200	F10	40	17	125	25,3	45°	4 x 11	18	102	70	3	-	-	-
10, 12	250, 300	F12	50	22	150	32,4	45°	4 x 13	21	125	85	3	-	-	-
14, 16	350, 400	F14	60	-	175	44,4	45°	4 x 17	34	140	100	4	9,5	39	55
18, 20	450, 500	F16	80	-	210	44,4	45°	4 x 22	44	165	130	4	9,5	39	55
24	600	F25	90	-	300	63,5	22,5°	8 x 17	60	254	200	5	16,0	54	70

all dimensions in millimeters (mm), if not indicated differently

Head flange

Dimensions for direct mounting of drives

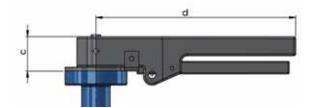
In accordance with EN ISO 5211, including the requirement of the chemical industry to decouple the actuator from the valve.



Panels for direct mounting

at the head flange

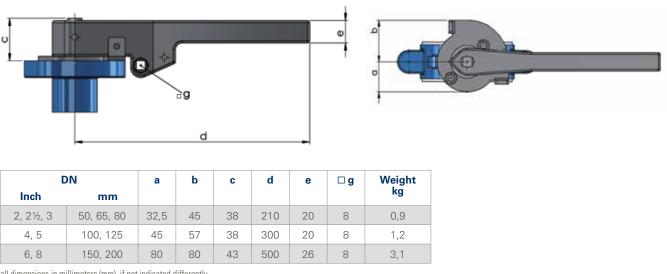
D	N	Head flange	ltem Number
Inch	mm	*	
2, 2 1⁄2, 3	50, 65, 80	F05	VAL07-10202
4, 5	100, 125	F07	VAL07-10203
6, 8	150, 200	F10	VAL07-10204
10, 12	250, 300	F12	VAL07-10205
10, 12	250, 300	FIZ	VALU7-10205


Reducing sleeves for direct mounting

From in mm	To in mm *	ltem Number
11	14	VAL08-10191
14	17	VAL08-10192
17	22	VAL08-10193
22	27	VAL08-10194
27	22	VAL08-10195

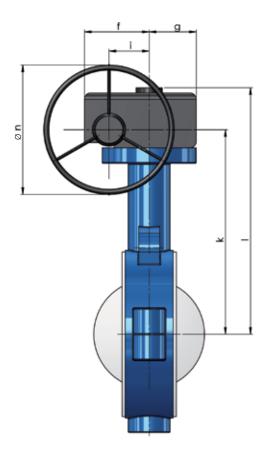
Manual Operators

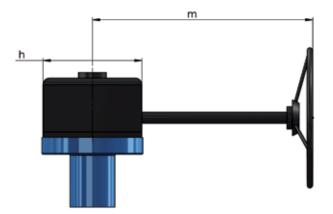
Hand-Lever


D	N	а	b	с	d	Weight kg
Inch	mm					kg
2, 2 1/2, 3	50, 65, 80	32,5	45	38	210	1,0
4, 5	100, 125	45	57	38	300	1,5
6, 8	150, 200	80	80	43	500	3,5

all dimensions in millimeters (mm), if not indicated differently

ADR-Hand-Lever


ADR-Hand-Lever for hazardous goods transportation



all dimensions in millimeters (mm), if not indicated differently

Manual Operators

Gear Operator

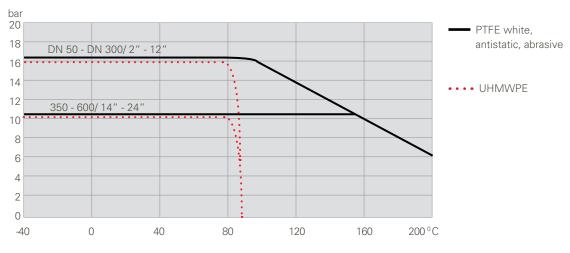
D	N	f	g	h	i	k*	۱*	m	Øn	Total wei	ght kg**
Inch	mm									Type W Wafer	Type L Lug
2	50	62	45	88	38,5	166,5	198	152	125	6,6	7,4
2 1⁄2	65	62	45	88	38,5	167,5	208	152	125	7,6	8,3
3	80	62	45	88	38,5	191,5	223	152	125	8,0	10,5
4	100	62	45	88	38,5	206,5	238	152	125	10,1	14,2
5	125	62	45	88	38,5	221,5	253	152	125	12,6	16,6
6	150	83,5	58	116	52	250	282	182	250	18,0	22,9
8	200	83,5	58	116	52	280	312	182	250	23,2	29,2
10	250	105	75	150	66,7	322	361	216	300	38,2	47,9
12	300	105	75	150	66,7	362	401	216	300	47,1	63,5
14	350	131	86	198	89,5	425	468	283	450	89,0	120,0
16	400	131	86	198	89,5	470	513	283	450	106,7	149,2
18	450	178	114	252	123	510	566	335	450	152,4	180,9
20	500	178	114	252	123	560	611	335	450	184,3	274,8
24	600	209	117	315	154	625	702	360	450	289,2	427,7

* GAR-SEAL, SAFETY-SEAL, MOBILE-SEAL

all dimensions in millimeters (mm), if not indicated differently

** for version 111-

Standard Design

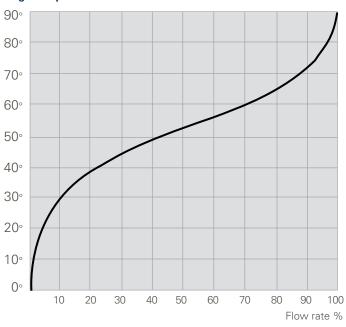

For selecting the correct valve actuation, the values below represent the maximum torques for the opening and closing action. The torques shown in the table are valid for disc and liner made of the same material: PTFE, antistatic or abrasive. For torque tables for other materials or other material combinations please consult our valves specialists. The stated torques are including a 10 % safety factor at dry condition measured at 21 °C (70 °F).

Torques in Nm

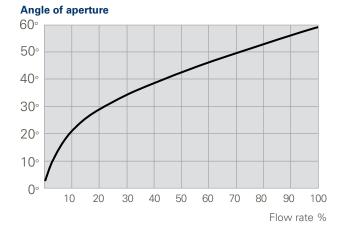
	Material	Liner* PTFE/antistatic/abrasive		
Größen		Disc	PTFE/antistatic/abrasive	
Inch	mm		Nm	
2	50	25		
21⁄2	65	28		
3	80	29		
4	100	53		
5	125	87		
6	150	121		
8	200	168		
10	250	215		
12	300	274		
14	350	544		
16	400	770		
18	450	996		
20	500	1089		
24	600	2056		

*3 mm liner up to DN 300 / 12" 4 mm liner up from DN 350 / 14"

P x T - Diagramm GAR-SEAL Butterfly Valve


Standard Design

Open/Close control – characteristic curve


This curve applies to butterfly valves of all nominal sizes with small deviations depending on the thickness and shape of the valve disc. Butterfly valves with a disc opening of more than 60° should only be used for on/off control only.

Continuous control / characteristic curve

For throttle valves for continuous control, the volumetric flow rate is set to 100% at an opening angle of 60°. This ensures a flow reserve. The curve has an equal-percentage characteristic in the opening range from approx. 20° to 60°.

Angle of aperture

Flow Rate

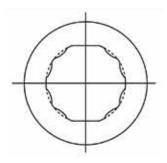
For liquids the following references apply: Constant control: 4,5 m/s Open/Close control: 7,5 m/s for GAR-SEAL Butterfly Valves with UHMWPE-Lining the maximum flow rate is limited to 3,5 m/s.

Nomin	al bore	kv-factor against the angle of aperture							
Inch	mm	20°	30°	40°	50°	60°	70°	80°	90°
2	50	1	13	25	37	54	69	81	84
2 1/2	65	2	16	34	52	82	112	130	132
3	80	2	16	38	80	133	191	243	244
4	100	9	43	87	144	228	316	399	420
5	125	16	61	122	210	262	497	670	710
6	150	22	113	215	364	547	822	972	997
8	200	35	165	332	555	874	1215	1534	1613
10	250	65	301	608	1015	1599	2221	2805	2950
12	300	96	446	900	1504	2369	3291	4157	4371
14	350	136	632	1277	2133	3360	4669	5896	6200
16	400	194	898	1813	3027	4770	6626	8369	8800
18	450	237	1097	2215	3698	5824	8095	10223	10750
20	500	297	1377	2781	4644	7317	10166	12839	13500
24	600	420	1948	3935	6570	10352	14382	18164	19100

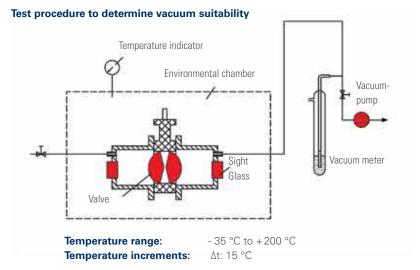
kv-factor against the angle of aperture

The kv-factor reflects the flow of water (density 1=1000 kg/m3) in m3/h for a pressure gradient of Δ p= 1 bar. The resistance characteristic of the butterfly valve is subject to the kv-factor. It replaces all earlier definitions, see cross-section, flow and friction coefficient. A detailed butterfly valve dimensioning for maximum flow and/or for throttle use is performed by CONVAL-Software programming.

We will be pleased to calculate the flow characteristics. According to your operating conditions. Please contact us directly us directly.


Special Vacuum Design

Garlock valves have for decades operated under extreme vacuum conditions.


Past statements on vacuum stress have been made and documented, but only at ambient temperature and the valve closed. This is very ambiguous to a plant engineer. His requirements are the actual vacuum data at all temperatures. Plant vacuum can go down to 1 mbar together with higher temperatures. This often leads to leakages and malfunctions as the liner can deformed. Garlock has developed special vacuum versions of its GAR-SEAL valves to meet these particular demands.

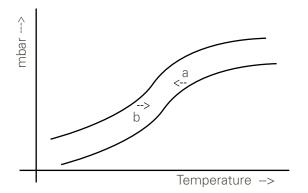
Vacuum applications of fluorocarbon lined valves with separate liners are subject to special parameters. Therefore not only the actual vacuum is important, but also the service temperature, the thickness of the liner and its geometry.

Garlock with its successful development program and substantial testing of various sizes, including DN 500, at temperatures up to 200 °C concluded that such extreme service conditions can be handled.

Typical appearance of high vacuum-loades Body Liner

3 mm standard liner

GAR-SEAL Valves can be supplied with varying liner thicknesses for vacuum duties.

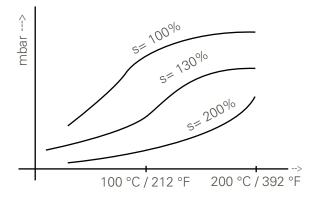

The DN 100 size liners show the difference between the standard 3 mm thick and the vacuum 5 mm thick liners. The liner thickness substantially improves the performance against high vacuum stress.

In the DN 100 valve the 3 mm thick liner will operate to 1 mbar, while the 5 mm liner operates below 1 mbar vacuum. Depending on the operating vacuum and temperature and size of valve, the liner thickness can be calculated and selected between 3 mm and 10 mm for GAR-SEAL valves.

Please contact Garlock directly for your specific requirements on Vacuum Application.

Data for vacuum application

Facts and figures for the use with vacuum


Typical characteristics of body liners under vacuum stress depending on temperature

- a) Increase size and/or decrease liner thickness DN 1 > DN 2; s1 < s2
- b) Increasing liner thickness and/or higher moment of resistance by altering geometry s2 > s1.

Recommended application limits for GAR-SEAL valves with standard body liners

For applications in vacuum and/or temperatures above these values special body liners are necessary. Please contact Garlock directly.

Stress example of Garlock DN 300 body liner with same geometry but different liner thickness "s"

A 30% increase of the liner thickness at a service temperature of 160 $^\circ C$ improves the vacuum resistance by 35 %. A doubling of the lining thickness will lead to a 85 % increase in the vacuum resistance.

Nominal width	Temperature range	Standard liner *	Maximum vacuum liner *
≤ DN 100	\leq 100 °C/ 212 °F	1	< 1
	$>$ 100 °C/ 212 °F \leq 150 °C/ 302 °F	1	< 1
	$>150~^{\circ}\text{C}/\ 302~^{\circ}\text{F} \leq 200~^{\circ}\text{C}/\ 392~^{\circ}\text{F}$	1	< 1
DN 150	≤ 100 °C/ 212 °F	5	< 1
	> 100 °C/ 212 °F ≤ 150 °C/ 302 °F	173	1
	> 150 °C/ 302 °F ≤ 200 °C/ 392 °F	293	1
DN 200	≤ 100 °C/ 212 °F	209	< 1
	> 100 °C/ 212 °F ≤ 150 °C/ 302 °F	343	< 1
	> 150 °C/ 302 °F ≤ 200 °C/ 392 °F	438	1
DN 300	≤ 100 °C/ 212 °F	471	1
	> 100 °C/ 212 °F ≤ 150 °C/ 302 °F	561	39
	> 150 °C/ 302 °F ≤ 200 °C/ 392 °F	624	178
DN 400	≤ 100 °C/ 212 °F	498	1
	> 100 °C/ 212 °F ≤ 150 °C/ 302 °F	583	1
	> 150 °C/ 302 °F ≤ 200 °C/ 392 °F	643	108
DN 500	≤ 100 °C/ 212 °F	599	162
	> 100 °C/ 212 °F ≤ 150 °C/ 302 °F	667	304
	> 150 °C/ 302 °F ≤ 200 °C/ 392 °F	715	405
DN 600	≤ 100 °C/ 212 °F	737	343
	> 100 °C/ 212 °F ≤ 150 °C/ 302 °F	782	454
	> 150 °C/ 302 °F ≤ 200 °C/ 392 °F	813	533

Garlock

* all data in mbar (absolute)

Note:

Properties/applications shown throughout this brochure are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations consult Garlock. Failure to select the proper sealing products could result in property damage and/or serious personal injury. Performance data published in this brochure has been developed from field testing, customer field reports and/or in-house testing. While the utmost care has been used in compiling this brochure, we assume no responsibility for errors. Specifications subject to change without notice. This edition cancels all previous issues. Subject to change without notice GARLOCK is a registered trademark for packings, seals, gaskets, and other products of Garlock. © Garlock lnc 2025. All rights reserved worldwide.

GARLOCK GMBH

an Enpro Company Falkenweg 1, 41468 Neuss, Germany +49 2131 349 0 garlockgmbh@garlock.com www.garlockeurope.com

United States of America Canada Mexico Germany China Singapore

Taiwan Australia